В рамках подготовки к экзамену по учебной дисциплине ОУД.03 Математика: алгебра и начала математического анализа, геометрия вам предлагается демонстрационный вариант, который позволит вам проверить уровень усвоения учебного материала и его практического применения в виде контрольной работы. Структура демонстрационного варианта соответствует экзаменационным материалам для специальностей: 31.02.02 Акушерское дело, 31,02.03 Лабораторная диагностика (база 9 классов) 31.02.04 Медицинская оптика (база 9 классов), 34.02.01 Сестринское дело (база 9 классов).

Демонстрационный вариант (вариант 0)

Инструкция

<u>Задания А1-А5, А7, А9</u>: из предложенных вариантов ответов выберите один правильный и поставьте метку в ту клетку бланка №1, номер которой соответствует номеру выбранного вами ответа.

Задания А5, А8, А10: запишите краткий ответ справа от номера задания в бланке №1.

<u>Задания В1 – В8:</u> полная запись решения с обоснованием выполненных действий На выполнение 26 тестовых заданий отводится 180 минут.

Примечание:

Правильное решение каждого из заданий A1-A10 оценивается одним баллом. Правильное решение каждого из заданий B1-B8 оценивается двумя баллами. Максимальный балл за выполнение всей работы – 26 баллов.

А1. Найдите значение выражения $2^7 \cdot 2^{-3}$.

1) 8 2) 4 3) 256 4) 16

А2. Упростите выражение 3 $\overline{343 \cdot 0,125}$.

1)0,35 3) 35 2) 3,5 4) 0,035

А3. Вычислите: $log_5 250 - log_5 10$.

1) 2 3) 5

2) - 2 4) 25

А4. Найдите значение выражения $4 \cdot 3^{log_3 2}$.

1) 12*log*₃2 3) 8

2) 16 4) $log_3 8$

А5. Укажите промежуток, содержащий корень уравнения $7^{x+6} = 49$.

1) (-4; -1)

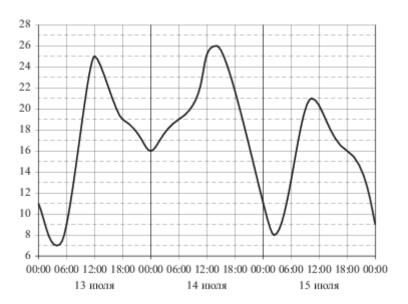
3) 3;5

2) -4; 3

4) 5;8

А6. Найдите корень уравнения $log_8 \ x + 9 \ = log_8 \ 2x - 17$.

A7. Решите уравнение $\cos x = \frac{1}{2}$.


1) $\pm \frac{\pi}{2} + \pi n, n \in \mathbb{Z}$

 $3)\pm\frac{\pi}{6}+2\pi n, n\in \mathbb{Z}$

 $2) \pm \frac{\pi}{3} + 2\pi n, \ n\epsilon Z$

4) $\frac{\pi}{3} + 2\pi n, n\epsilon Z$

А8. На рисунке показано изменение температуры воздуха на протяжении трёх суток. По горизонтали указывается дата и время, по вертикали — значение температуры в градусах Цельсия. Определите по рисунку наименьшую температуру воздуха 14 июля. Ответ дайте в градусах Цельсия.

А9. Найдите производную функции $y=x^6-4\sin x$.

1)
$$y' = 6x^5 + 4\cos x$$

1)
$$y' = 6x^5 + 4\cos x$$

2) $y' = 6x^5 - 4\cos x$
3) $y' = \frac{x^7}{7} + 4\cos x$
4) $y' = x^5 - 4\cos x$

2)
$$y' = 6x^5 - 4\cos x$$

4)
$$y' = x^{5} - 4\cos x$$

А10. В сборнике билетов по биологии всего 35 билетов, в 14 из них встречается вопрос по зоологии. Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по зоологии.

- В1. Решить неравенство $2^{3x-5} \ge 16$.
- B2. Найдите значение выражения $\cos \alpha$, если $\sin \alpha = -\frac{7}{25}$ и $\alpha \epsilon = \pi$; $\frac{3\pi}{2}$.
- B3. Решите неравенство $\log_4(x + 1) < \log_4 5$.
- В4. Найдите значение выражения $\frac{2 \sin 30^{\circ} \cdot \cos 30^{\circ}}{\sin 60^{\circ}}$.
- В5. Найдите область определения функции у= $\log_3 x^2 + 3x$.

В6. Найти площадь боковой поверхности цилиндра, если радиус его основания равен 4, а высота равна 3.

B7. Найдите точку максимума функции $y = x^3 - 192x + 14$.

В8. Лекарственный препарат «Циплофлоксацин» (Ципролет) 500мг. (10 таб.) стоит 109 руб. Пациент имеет скидку по аптечной карточке 2%. Сколько заплатит пациент за лекарственный препарат? (Округлить до десятых)

Решение демонстрационного варианта.

A1. Вычислите $2^7 \cdot 2^{-3}$.

Решение. Используя формулу $a^p \cdot a^q = a^{p+q}$, получим $2^7 \cdot 2^{-3} = 2^{7+-3} = 2^{7-3} = 2^4 = 16$.

А2. Упростите выражение 3 $\overline{343 \cdot 0,125}$.

Решение. Учитывая, что $343 = 7^3$, а $0,125 = 0,5^3$, и используя формулу $\overline{ab} = \overline{a} \cdot \overline{b}$, получим $\overline{343 \cdot 0,125} = \overline{343} \cdot \overline{0,125} = 7 \cdot 0,5 = 3,5$.

А3. Вычислите: $log_5250 - log_510$.

Решение. $log_5 250 - log_5 10$. = $log_5 \frac{250}{10} = log_5 25 = 2$.

А4. Найдите значение выражения $4 \cdot 3^{log_3 2}$.

Решение. В соответствии с основным логарифмическим тождеством $b = a^{\log_a b}$ получаем $4 \cdot 3^{\log_3 2} = 4 \cdot 2 = 8$.

А5. Укажите промежуток, содержащий корень уравнения $7^{x+6} = 49$.

Решение. Так как $49 = 7^2$, то $7^{x+6} = 7^2$; x + 6 = 2; x = 2- 6; x = -4.

Из предложенных вариантов выбираем вариант 2) - 4; 3.

А6. Найдите корень уравнения $log_8 x + 9 = log_8 2x - 17$.

Решение. Применяя метод потенцирования, перейдем к равенству, не содержащему логарифмы.

$$x + 9 = 2x - 17$$
; $x - 2x = -17 - 9$; $-x = -26$; $x = 26$. Other: 26.

A7. Решите уравнение $\cos x = \frac{1}{2}$.

Решение. Корни уравнения находим по формуле $x = \pm \arccos \frac{1}{2} + 2\pi n$, n ∈Z;

 $x = \pm \frac{\pi}{3} + 2\pi n$, n \in Z. Из предложенных вариантов выбираем вариант 2) $\pm \frac{\pi}{3} + 2\pi n$, $n \in$ Z.

А9. Найдите производную функции $y=x^6-4\sin x$.

Решение. Используем правила дифференцирования и таблицу производных основных элементарных функций. Получаем $y' = 6x^5 - 4\cos x$. Из предложенных вариантов выбираем вариант 2) $y' = 6x^5 - 4\cos x$.

A10. В сборнике билетов по биологии всего 35 билетов, в 14 из них встречается вопрос по зоологии. Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по зоологии.

Решение: Число всех возможных элементарных исходов испытания n=35. Число благоприятствующих событию A (школьнику не достанется вопроса по зоологии) исходов m=35-14=21. Значит $P(A)=\frac{m}{n}=\frac{21}{35}=\frac{3}{5}=0$, 6.

В1. Решить неравенство $2^{3x-5} \ge 16$.

Решение. При решении показательных неравенств следует учитывать, что при a > 1 из $a^{f(x)} > a^{g(x)}$ следует f(x) > g(x), а при 0 < a < 1 из $a^{f(x)} < a^{g(x)}$.

При решении показательных неравенств используют те же приемы, что и при решении показательных уравнений.

Запишем неравенство в виде $2^{3x-5} \ge 2^4$.

Так как 2 >1, то 3x – 5 \geq 4; 3x \geq 5+4; 3x \geq 9; x \geq 3. Ответ: 3; + ∞ .

В2. Найдите значение выражения $\cos \alpha$, если $\sin \alpha = -\frac{7}{25}$ и $\alpha \epsilon = \pi$; $\frac{3\pi}{2}$.

Решение. Воспользуемся формулой $cos\alpha = \pm \frac{1}{1-sin^2\alpha}$. Так как $\pi < \alpha < \frac{3\pi}{2}$, το $cos\alpha < 0$, т.е.

$$\cos \alpha = - \overline{1 - \sin^2 \alpha} = - \overline{1 - (\frac{7}{25})^2} = - \overline{\frac{576}{625}} = -\frac{24}{25}.$$

B3. Решите неравенство $log_4(x + 1) < log_4 5$.

Решение. Так как основание 4>1, то неравенство $\log_4(x+1)<\log_4 5$ равносильно системе

$$x + 1 < 5$$
, $x < 4$,
 $x + 1 > 0$; $x > -1$; $^{-1} < x < 4$.

Ответ: (-1;4).

В4. Найдите значение выражения
$$\frac{2\sin 30^{\circ} \cdot \cos 30^{\circ}}{\sin 60^{\circ}}$$
.
 $\frac{Peшение.$ Используя формулу $\sin 2\alpha = 2\sin \alpha\cos \alpha$ $\frac{2\sin 30^{\circ}\cos 30^{\circ}}{\sin 60^{\circ}} = \frac{\sin 60^{\circ}}{\cos 60^{\circ}} = 1$ или $\frac{2\sin 30^{\circ}\cos 30^{\circ}}{\sin 60^{\circ}} = \frac{2\sin 30^{\circ}\cos 30^{\circ}}{2\sin 30^{\circ}\cos 30^{\circ}} = 1$.
Ответ: 1.

В5. Найдите область определения функции $y = \log_3 x^2 + 3x$.

Решение. Область определения функции находится из условия $x^2+3x>0$.

Решим квадратное неравенство:

$$x^2+3x=0$$
;

$$x(x+1)=0$$
;

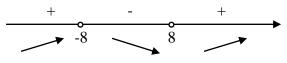
 $x_1=0$; $x_2=-3$. Следовательно, неравенство выполняется при -3 < x < 0.

Ответ: (-3;0).

В6. Найти площадь боковой поверхности цилиндра, если радиус его основания равен 4, а высота равна 3.

Решение. Используем формулу для вычисления площади боковой поверхности цилиндра S= 2π rh. Следовательно, S= 2π + 4+ 3= 24π .

Ответ: 24π.


B7. Найдите точку максимума функции $y = x^3 - 192x + 14$.

Решение. Функция определена на множестве всех действительных чисел: $x \in R$.

$$y'=3x^2-192$$
. Находим критические точки: $y'=0$; $3x^2-192=0$; $3x^2=192$; $x^2=64$; $x=\pm 8$.

Критические точки разбивают область определения на интервалы x<-8; -8< x<8; x>8.

Определяем на каждом из интервалов знак производной:

Следовательно, х=-8 – точка максимума.

Ответ: -8.

В8. Лекарственный препарат «Циплофлоксацин» (Ципролет) 500мг. (10 таб.) стоит 109 руб. Пациент имеет скидку по аптечной карточке 2%. Сколько заплатит пациент за лекарственный препарат? (Округлить до десятых)

Решение.
$$109$$
 руб. -100% , х руб. -2% .

$$x = \frac{109 \cdot 2}{100}$$
; $x = 2,18$.

 $109-2,18=106,82 \approx 106.8.$

Ответ: 106,8 руб. или 106 руб. 80 коп.